Dopaminergic pathway and athletic mind


Abbas Ali Ramozi , Ali Ahmad Yousefi , Rohullah Roein , Sayed Abulqasem Baqeri


Abstract

Purpose: we reviewed that the mental fatigue is influenced by dopamine depletion, and we assume that increasing DA level can increase athletic stamina and promote athletic performance after prolong exercise.

Methods: The search strategy was according to key words contain, Mental fatigue , Decision making , Dopamine, Stroboscope training through the Google scholar, PubMed, and Elsevier. Among the literatures, 100 papers include review and original articles were studied. Finally, we decided to select 49 papers based on similarity and recent studies so more than 50 percent of papers were excluded, because of they were out of date or irrelevant to key words.

Results: Based on many studies, it was found dopamine has an essential role on athletic performance and his stamina.

Conclusion: The stroboscope vision training in sports could enhance the dopaminergic neurons and associated visuo-motor skills.

Key words: Dopamine, dopaminergic projection, mental fatigue, decision making


References

1. Syslova K, Rambousek L, Bubenikova-Valesova V, Slamberova R, Novotny P, Kacer P. Dopamine Analysis in Neuroscience Research. Dopamine Funct Regul Heal Eff. 2012;(December 2015):81-112.

2. Braver TS, Cohen JD. Dopamine, cognitive control, and schizophrenia: the gating model. 1999;121(2):327-349. doi:10.1016/s00796123(08)63082-4

3. Juárez Olguín H, Calderón Guzmán D, Hernández García E, Barragán Mejía G. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev. 2016;2016. doi:10.1155/2016/9730467

4. Strange PG. Dopamine Receptors Review. 2008;(Table 2):1-8. http://www.komabiotech.co.kr/pdf/dopamine_receptors_review.pdf.

5. Luo SX, Huang EJ. Dopaminergic neurons and brain reward pathways:

From neurogenesis to circuit assembly. Am J Pathol. 2016;186(3):478-

488. doi:10.1016/j.ajpath.2015.09.023

6. Yeragani VK, Tancer M, Chokka P, Baker GB. Arvid Carlsson , and the story of dopamine. 2010;52(1):87-89. doi:10.4103/0019-5545.58907

7. Cachope R, Cheer JF. Local control of striatal dopamine release. Front Behav Neurosci. 2014;8(May):1-7. doi:10.3389/fnbeh.2014.00188

8. Seeman P. The Dopamine Receptors. Dopamine Recept. 2013;(December 2009). doi:10.1007/978-1-4757-2635-0

9. Marsden CA. Dopamine: The rewarding years. Br J Pharmacol. 2006;147(SUPPL. 1):136-144. doi:10.1038/sj.bjp.0706473

10. Ayano G. Dopamine: Receptors, Functions, Synthesis, Pathways, Locations and Mental Disorders: Review of Literatures. J Ment Disord Treat. 2016;2(2):2-5. doi:10.4172/2471-271x.1000120

11. Volkow ND, Fowler JS, Gatley SJ, et al. PET evaluation of the dopamine system of the human brain. J Nucl Med. 1996;37(7):1242-1256. http://www.ncbi.nlm.nih.gov/pubmed/8965206.

12. Takahashi H, Yamada M, Suhara T. Functional significance of central D1 receptors in cognition: Beyond working memory. J Cereb Blood Flow Metab. 2012;32(7):1248-1258. doi:10.1038/jcbfm.2011.194

13. Missale C, Russel Nash S, Robinson SW, Jaber M, Caron MG. Dopamine receptors: From structure to function. Physiol Rev. 1998;78(1):189-225.

doi:10.1152/physrev.1998.78.1.189

14. Sang-Min Lee, Yang Yang and RBM. Dopamine D1 Receptor Signaling: Does GaQ–Phospholipase C Actually Play a Role? TTHE J Pharmacol Exp Ther. 2014;20(16):RC91-RC91. doi:10.1523/jneurosci.20-16j0001.2000

15. Nichols DE. Dopamine Receptor Subtype-Selective Drugs:D1-Like

Receptors. Dopamine Recept. 2013:75-99. doi:10.1007/978-1-47572635-0

16. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: Version III - The final common pathway. Schizophr Bull. 2009;35(3):549-562. doi:10.1093/schbul/sbp006

17. Souza UMD. The Dopamine Receptors. Gene Promot Struct Dopamine Recept. 2013:23-46. doi:10.1007/978-1-4757-2635-0

18. van de Groep IH, de Haas LM, Schutte I, Bijleveld E. Spontaneous eye blink rate (EBR) predicts poor performance in high-stakes situations. Int J Psychophysiol. 2017;119:50-57. doi:10.1016/j.ijpsycho.2017.01.009

19. Valenzuela CF, Puglia MP, Zucca S. Focus on: Neurotransmitter systems. Alcohol Res Heal. 2011;34(1):106-120.

20. Yasunori Oda 1 NK 2, Masaomi Iyo. Alterations of Dopamine D2 Receptors and Related Receptor-Interacting Proteins in Schizophrenia: The Pivotal Position of Dopamine Supersensitivity Psychosis in

Treatment-Resistant Schizophrenia. Int J Mol Sci. 2015;16(12):30144-

30163. doi:10.3390/ijms161226228

21. Sescousse G, Ligneul R, van Holst RJ, et al. Spontaneous eye blink rate and dopamine synthesis capacity: preliminary evidence for an absence of positive correlation. Eur J Neurosci. 2018;47(9):1081-1086. doi:10.1111/ejn.13895

22. Fuxe K, Manger P, Genedani S, Agnati L. The nigrostriatal DA pathway and Parkinson’s disease. Park Dis Relat Disord. 2006:71-83. doi:10.1007/978-3-211-45295-0_13

23. Railo H, Olkoniemi H, Eeronheimo E, Pääkkönen O, Joutsa J. Dopamine and eye movement control in Parkinson ’ s disease : deficits in corollary discharge signals ? 2018:1-37.

24. Grace AA, Lodge DJ, Buffalari DM. Dopamine-CNS pathways and neurophysiology. Encycl Neurosci. 2010:549-555. doi:10.1016/B978008045046-9.01140-2

25. Caminiti SP, Presotto L, Baroncini D, et al. Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson’s disease. NeuroImage Clin. 2017;14(October 2016):734-740. doi:10.1016/j.nicl.2017.03.011

26. Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry. 2004;12(6):305-320. doi:10.1080/10673220490910844

27. Trainor BC. Stress responses and the mesolimbic dopamine system: Social contexts and sex differences. Horm Behav. 2011;60(5):457-469. doi:10.1016/j.yhbeh.2011.08.013

28. Ikegami A, Duvauchelle CL. Dopamine Mechanisms and Cocaine Reward. Int Rev Neurobiol. 2004;62:45-94. doi:10.1016/S00747742(04)62002-2

29. Lapish CC, Seamans JK. The ability of the mesocortical dopamine system to operate in distinct temporal modes. 2017;191(3):609-625. doi:10.1007/s00213-006-0527-8.The

30. Floresco SB, Magyar O. Mesocortical dopamine modulation of executive functions: Beyond working memory. Psychopharmacology (Berl). 2006;188(4):567-585. doi:10.1007/s00213-006-0404-5

31. Dobryakova E, Genova HM, DeLuca J, Wylie GR. The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Front Neurol. 2015;6(MAR):1-8. doi:10.3389/fneur.2015.00052

32. Graybiel AM, Grafton ST. The striatum: Where skills and habits meet.

Cold Spring Harb Perspect Biol. 2015;7(8):1-13. doi:10.1101/cshperspect.a021691

33. Hikosaka O. Basal ganglia mechanisms of reward-oriented eye movement. Ann N Y Acad Sci. 2007;1104:229-249. doi:10.1196/annals.1390.012

34. Adriana Galvan1, 2, Masaaki Kuwajima1,+, and Yoland Smith1 2, 1Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322 U, 2Department of Neurology, Emory University, Atlanta, Georgia 30322 UsaR. Glutamate and GABA receptors and transporters in the basal ganglia: What does their subsynaptic localization reveal about their function? Neuroscience. 2006;143(2):351–375. doi:10.1038/mp.2011.182.doi

35. Matamales M, Bertran-Gonzalez J, Salomon L, et al. Striatal mediumsized spiny neurons: Identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One. 2009;4(3). doi:10.1371/journal.pone.0004770

36. Alexxai V. Kravitz1 and Anatol C. Kreitzer1 2. Striatal Mechanisms Underlying Movement, Reinforcement, and Punishment.

2012;27(3):1201-1210. doi:10.1152/physiol.00004.2012.Striatal

37. Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA. Mechanisms for selection of basic motor programs - Roles for the striatum and pallidum. Trends Neurosci. 2005;28(7):364-370. doi:10.1016/j.tins.2005.05.004

38. Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev.

2000;80(3):953-978. doi:10.1152/physrev.2000.80.3.953

39. Rikani AA, Choudhry Z, Choudhry AM, et al. The mechanism of degeeeration of striatal neuronal subtypes in Huntington disease. Ann Neurosci. 2014;21(3):112-114. doi:10.5214/ans.0972.7531.210308

40. ROTHWELL JC. the Motor Functions of the Basal Ganglia. J Integr Neurosci. 2011;10(03):303-315. doi:10.1142/s0219635211002798

41. Gagnon D, Petryszyn S, Sanchez MG, et al. Striatal Neurons Expressing D1 and D2 Receptors are Morphologically Distinct and Differently

Affected by Dopamine Denervation in Mice. Sci Rep. 2017;7(January):9-

17. doi:10.1038/srep41432

42. Liljeholm M, O ’doherty JP. Contributions of the striatum to learning, motivation, and performance: an associative account Anatomical and functional delineations of the striatum. Trends Cogn Sci.

43. Dobryakova E, Deluca J, Genova HM, Wylie GR. Neural correlates of cognitive fatigue: Cortico-Striatal circuitry and effort-reward imbalance.

J Int Neuropsychol Soc. 2013;19(8):849-853.

doi:10.1017/S1355617713000684

44. Schiphof-Godart L, Roelands B, Hettinga FJ. Drive in sports: How mental fatigue affects endurance performance. Front Psychol. 2018;9(AUG). doi:10.3389/fpsyg.2018.01383

45. Jin M, Ji L, Peng H. The relationship between cognitive abilities and the decision-making process: The moderating role of self-relevance. Front Psychol. 2019;10(AUG):1-13. doi:10.3389/fpsyg.2019.01892

46. Collins A, Koechlin E. Reasoning, learning, and creativity: Frontal lobe function and human decision-making. PLoS Biol. 2012;10(3). doi:10.1371/journal.pbio.1001293

47. Kaya A. Decision Making by Coaches and Athletes in Sport. Procedia - Soc Behav Sci. 2014;152:333-338. doi:10.1016/j.sbspro.2014.09.205

48. Volz KG, Schubotz RI, Von Cramon DY. Decision-making and the frontal lobes. Curr Opin Neurol. 2006;19(4):401-406. doi:10.1097/01.wco.0000236621.83872.71

49. Phil Watson P| D of HP| VUBB. TYROSINE SUPPLEMENTATION : CAN THIS AMINO ACID BOOST BRAIN DOPAMINE AND IMPROVE PHYSICAL AND MENTAL PERFORMANCE ?

2016;28(157):1-6.






Download article


Download 9740581233.pdf (Size: 415.2 KB)